Coumarin derivatives as monoamine oxidase B inhibitors with antiparkinsonian like properties

Pilar OLAYA1,*, Dolores Viña2, José L. LOPEZ2 and Mario GUERRERO3,
1Universidad Nacional de Colombia. mployao@unal.edu.co 2Universidad de Santiago de Compostela. 3Universidad de Salamanca

Introduction
Parkinson disease (PD) is the second most common neurodegenerative disorder causing progressive disability1. One therapeutic option for treatment of PD is the use of monoamine oxidase B (MAO-B) inhibitors in monotherapy or concomitantly with levodopa2. Some coumarin compounds have shown selective inhibition of MAO-B3,4,5. In this study, monoamine oxidase inhibitory activity and the possible antiparkinsonian effects of coumarin derivatives were evaluated.

Methods
Two coumarin derivates (CD1 and CD2) were synthesized and evaluated in following tests:
• In vitro assay of MAO inhibition
 Monoamine oxidase inhibitory activity of CD1 and CD2 were evaluated using the Amplex® Red kit (Molecular Probes, Eugene, Oregon, USA) and the recombinant human isoforms A and B (Sigma-Aldrich).
• In vivo assay of 2-phenylethylamine (PEA)
 The mice were administered with selegiline (10 mg/kg), vehicle, CD1 or CD2 in doses of 50, 100 and 200 mg/kg. Then PEA was administrated, and stereotyped behavior produced or increased by PEA were scored on a 0-4 scale depending on the intensity of the behavior exhibited
• Reserpina model
 The reversal of the hypokinesia produced by reserpine in mice was evaluated in open field, after administration of vehicle, selegiline (10 mg/kg), CD1 or CD2 in doses of 50, 100 and 200 mg/kg.

Results
• In vitro assay of MAO inhibition
 The results showed that both coumarin compounds presented selective inhibitory activity towards MAO-B (IC50 values: CD1=5.46 ± 0.36 µM and CD2 =41.63 ± 2.79 µM)
• In vivo assay of 2-phenylethylamine (PEA)
 Stereotyped behavior in mice after administration PEA, in combination with CD1 or CD2, suggests in vivo inhibition of MAO-B for this compounds

Fig.1 Stereotyped behavior in mice after administration PEA (23 mg/kg) in combination with CD1 (100 mg/kg), CD2 (100 mg/kg), vehicle (0.1 mL/10 g) or selegiline (10 mg/kg). * Significant difference with respect control group (p<0.05).

• Reserpina model
 Compounds CD1 and CD2 produced a significant increase in the locomotor activity of reserpinized mice compared to the control group.

Fig.2 Motor activity of reserpinized mice (3 mg / kg) that received CD1 (100 mg/ kg), CD2 (100 mg/kg), selegiline (10 mg / kg) or vehicle. * Significant difference with respect control group (p<0.05).

Conclusion
Coumarin derivates CD1 and CD2 presented selective inhibitory activity on monoamino oxidase B and anti-parkinsonian effects in a model of PD. Therefore, they could be potential antiparkinsonian agents.

Acknowledgments
This work was conducted with funding from Universidad Nacional de Colombia, Bogotá (VRI/DIB, Project: 13668).

References